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• B / •tot Table 2. Measured and calculated ratios "TDS/'TDS 

I~-DS is the integrated first-order TDS intensity included in the background, l~r°~s is the integrated first-order TDS intensity 
included in the Bragg peak. Scan length 2.0 °. 

Calculated a 
approximation Numerical calculations 

Reflection Measured cylinder sphere St b H & V' K & M d 

030 0.52 (7) 0.15 0.33 0.574 0.577 0.577 
060 0.56 (9) 0.32 0.33 0.497 0.498 0.498 

Calculated after: (a) Willis (1969); (b)Stevens (1974); (c) Helmholdt & Vos (1977); (d) Kurittu & Merisalo (1977). 

TDS contribution can be taken into account  by these 
first-order TDS calculations with an accuracy of  
approximately 4%. 

Assuming that (i)the harmonic approximation is 
valid, (ii)the influence of the radiation damage on 
the diffuse intensities is negligible and (iii)the first- 
order TDS is still the most dominant contribution, a 
mean temperature factor B can be determined from 
the measured inelastic intensities of at least two reflec- 
tions with parallel scattering vectors S (for details see 
Krec & Steiner, 1984). The measured inelastically 
scattered radiation included in the Bragg peak was 
integrated after subtracting the contribution in the 
background. The resulting integrated intensity was 
corrected for second-order TDS contributions, the 
amount of which was estimated with the program 
TDS2 written by Stevens (1974). From the ratio of 
the resulting diffuse intensities of the two reflections 
B was determined using the known structure factors 
Fo. The ob ta ined  B values at 295 K are 0.37 (8) and 
0.33 (8) A 2 for the cylindrical and spherical approxi- 
mations used for the calculation of the illuminated 
volume and are in agreement with the one reported 
by Fujimoto (1982) measured in the hexagonal Z 
direction. 
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Abstract 

First and second moments of the probability density 
o f t h e f u n c t i o n R = Y , ,  2 2 EoE¢ are evaluated for n-atom 
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models  consist ing o f  i correctly and n - i incorrectly 
placed atoms of  an N-a tom structure. Formulas are 
valid for space groups P1 and P1, and describe the 
influence o f  the size o f  the model  as well as data 
truncation. Introduction of the concept of an 
averaged structure leads to structure-independent 
conclusions about the behaviour of the resolving 
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power of the product function R in rotation searches. 
The signal (model with i = n) stands out more clearly 
against the random noise (models with i =  0) when'  
intensities below a certain threshold are removed 
from the data set. Results are verified against simu- 
lated experiments as well as a real structure. 

Introduction 

The proper orientation of a known molecular frag- 
ment may be determined using as discriminator the 
function 

R ~ 2 2 = E o ( H ) E ~ ( H ) .  (1) 
H 

Eo and Ec are the normalized structure factors belong- 
ing to the structure and the search fragment, respec- 
tively. The rotation search is successful if the largest 
observed R value corresponds to the correct orienta- 
tion and is not one of the R values belonging to the 
multitude of completely and partly incorrect orienta- 
tions. Therefore, the question under what conditions 
(1) is a useful discriminator function can only be 
answered from knowledge of the probability density 
function P ( R ) .  An example in the form of a histogram 
is given in Fig. 1. 

In this paper we investigate by theoretical statistical 
methods the properties of P ( R )  via its moments. In 
particular, the effect of the size of the search fragment 
and the effects of data truncation will be described. 
We will assume that the data are error free and will 
restrict ourselves to the space groups P1 and P1 and 
to search models for which all intramolecular vectors 
are correct in magnitude. Thus we exclude models 
containing some position which is not superimpos- 
able upon the unknown structure. 

It will be convenient to have at our disposal a short 
and concise nomenclature for common crystallo- 
graphic situations. An n-atom search model contain- 

| . . . . . . .  b . . Q  . . . . . . . . .  | 

R.,.x Rm,n Rave 
Fig. 1. Density distribution of R values normally encountered in 

a rotation search. 

ing i correctly and n -  i incorrectly oriented atoms 
will be denoted by (i, n - i) with n -< N, the number 
of atoms in the structure. The total assembly of R 
values is then considered as the set of the probability 
densities of R values belonging to various crystallo- 
graphic situations, i.e. P ( R )  = P[R( i ,  n - i)]. 

We distinguish three cases: 
(i) the correct orientation (n, 0), the corresponding 

R(n ,  0) is called the signal and will be single valued 
for a particular structure with a particular search 
fragment. 

(ii) all completely incorrect orientations (0, n), the 
contribution of which to P ( R )  is called the random 
noise. 

(iii) partly correct orientations (i, n - i), the contri- 
butions of which are called the non-random noise. 

The density functions are then defined over the 
sample space of all possible search-fragment orienta- 
tions (i, n - i) of a particular structure. 

If an orientation (i, n - i) can be realized in a large 
number of ways, the corresponding P [ R ( i ,  n - i)] can 
be considered as a continuous function. In a par- 
ticular structure with a given search fragment this is 
true for the random noise, because orientations (0, n) 
can be realized in a quasi-infinite number of ways. 
For other or ien ta t ions-  the non-random n o i s e - t h i s  
is not so and the corresponding P[R( i ,  n - i)] becomes 
discrete and depends very much upon the actual 
choice of the search fragment. 

Since we want to arrive at general structure- 
independent  conclusions, we will in our approach 
perform an extra averaging over all possible ob- 
servable structures. We will show that the average 
structure thus defined describes the situation for a 
particular structure rather well for the signal and the 
random noise. The (Gaussian) shape of the latter can 
be predicted accurately. The structure- and search- 
fragment-dependent peculiarities of an actual struc- 
ture, however, prevent an adequate statistical analysis 
of the non-random noise via the concept of the 
average structure. 

Algebraic derivations 

Until recently, it was not possible to predict meaning- 
ful spreads (second moments) of the probability func- 
tion P [ R ( g , f ) ] .  Van Havere & Lenstra (1983a, b, c) 
showed that the problems could be overcome by using 
the concept of conditional probabilities. For the 
fundamentals as well as for evidence of the validity 
of the assumptions used in the new theory, we refer 
to Van Havere & Lenstra. With general validity the 
first and second moments of P ( R )  can be written as 

( R ;  E2)  E : 2 = E o ( E o ;  E~o) (2) 
H 

and 
tr2(R. E2o)= y. , 4 , Eo t (E~;  E2o)-(E~; E2o):']. (3) 

H 
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Yea 

Table 1. The evaluation of (EPo)a 

Space group  P I Space group  P1 

I + a  I + Q  
2+2a +a  ~ 3 +(3 + a ) Q  

6+6a +3a 2+a 3 15+(15+5a +a2)Q 
e -a ~erfc (a /2 )  °5 

Q = (2a/rr )  °'s e-ta/2)/erfc (a /2 )  °'s. 

The notation CA; E2o) means the value A averaged 
over all orientations of the search fragment under the 
constraint of E 2, the set of observed E 2 values. The 
conditional notation of the intensity moments, e.g. 
(E4; 2 E o), shows that the available data are taken as 
a set of fixed parameters, representing the structure 
at hand. 

Expressions for (E2o; E 2) and (E 4" E 2) for the gen- 
eral situation (g, f )  in the space groups P1 and P1 
can easily be derived following the procedure of Petit 
& Lenstra (1982). Since the roles of E 2 and E2¢ can 
be interchanged (Srinivasan & Parthasarathy, 1976), 
it follows that the moments (E~; E2o) and (E4; E2o} 
can be readily obtained. One thus finds 

c, g2 __ g 2  
(E 2" E 2 ) = - ~  E2o + 1 nN (4) 

(E 4" E2)=(g4/n2N2)E4 + 2 a ( 1 - g 2 / n N ) ( g 2 / n N ) E 2  o 

+ a(1 - g2/nN)2 (5) 

(it is assumed that g, n and N are large). Analogous 
formulas were derived by Van Havere & Lenstra 
(1983c). Equation (4) is valid for P1 as well as for 
P1, while (5) holds for P1 if a = 2 and for P1 if a = 3. 

Substitution of (4) and (5) in (2) and (3) yields 

1 ( g ;  E2) = ~-~ ~ {g2E4 +(nN-g2 )E  2} (6) 

1 
o-2(R; E 2) = ~ ~ {2(a - 1)g2(nN- g2)E6 o 

H 

+ ( a -  1)(nN-g2)2E4}. (7) 

Now we can introduce the effects of data truncation 
by defining a threshold a, below which intensities are 
omitted from the calculations. In mathematical terms, 
it means 

Z E P o ; a - E  2 or~(EPo)~. 
H 

The averaging brackets indicate the averaging over 
all reflections above a and the subscript a is here 
linked to that threshold value. ~ and ~,, are, respec- 
tively, the number of reflections before and after the 
threshold is applied. 

Equations (6) and (7) are still valid in the particular 
case of a single structure under investigation. We now 
generalize the picture, i.e. without reference 1~o an 
actual structure, by replacing ~ ,  EoP; a<_E 2 or 

~a(EPo)a by their distribution values. In this way an 
extra averaging over all possible observable structures 
is introduced. So ~,~ and (EP)~ can be found by 
evaluating 

oD 

~,,= ~ J P(Eo)dEo (8) 
t~l/2 

and 
co 

(EPo)a = 7 E'oP(Eo)dEo/ ~ P(Eo)dEo. (9) 
a l / 2  al/2 

The marginal probability density functions P(Eo) for 
the space groups P1 and P l  are given by Wilson 
(1949) for structures containing a large number of 
atoms. 

It has been shown (Van Havere & Lenstra, 1983a) 
that the asymptotic Wilson distribution is sufficiently 
accurate in most practical situations. Technical details 
on the evaluation of the integrals (9) are reported by 
Petit, Lenstra & Van Loock (1981). The results are 
summarized in Table 1. It should be noted that the 
production of the Wilson intensity statistics, i.e. 
(E 2) = 1, renders the results of this investigation only 
valid for data sets that allow an atomic resolution. 

Finally, by substitution of the appropriate moments 
into (6) and (7) we arrive at the first and second 
moments of P[R(g,f)] for an averaged structure tak- 
ing into account the effect of data truncation and 
using a search fragment in the situation (g,f) .  So for 
P1 we have 

~e-~ 
(R; E 2 ) = - - ~ - { g 2 ( 1  + a  +a2)+( l  +a)nN} (I0) 

0-2(R ; E2o)= ~e-"[ (nN-g2) /n2N 2] 

× { g 2 ( 1 0  + 10a +5a z 

+2a3)+nN(2+2a+a2)}. (11) 

Similarly, we obtain the moments for an averaged 
structure in P l :  

{ R; E 2) = { ~'erfc (a/2)°'s/nN}{g2(2 + 2Q + aQ) 

+nN(I+Q)}  (12) 

o.2(R ; E 2) = 2 ~erfc  (a/2)°5[(nN - g2)/n 2 N 2] 

x {g2(27 +27Q +9aQ +2a2Q) 

+ nN(3 +3Q + aQ)}. (13) 

Obviously, the formulas for the correct orientation 
can be obtained from (10) to (13) by putting g = n, 
while those for the random noise are obtained by 
putting g = 0. It follows that R(n, 0) is always larger 
than R(0, n), with in between values for R(g,f) .  

The resolving power of the product function 

The above results may serve to estimate the resolving 
power Da of the rotation function (1) to discriminate 
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the signal from the random noise. We define 

(R(n,O)) , , - (R(O,n)) , ,  
Da - (14) 

eo-,,(0, n) 

era is a value related to the number of reflections and 
e depends on the number of rotation search points 
taken. For a standard structure e can be taken 
between 2 and 3. 

A contribution containing era(n, 0) is omitted from 
the denominator  of (14) because in each particular 
rotation search there is only one perfectly fitting 
orientation of the search fragment, i.e. tra(n, 0) may 
be taken as zero. 

Substitution of the relevant equations yields 

D.. = ffc:°'5(n/ eN)Za (15) 

with 
(1 + a  + a2)(e-a) °'5 

Z , , -  (.2 + 2 a  + a2)O. 5 i nP1  (16) 

and 
[2 +(2 + a)Q][erfc(a/2)°5] °'5 

Za = 2o.5{3 +(3 + a)Q}O. 5 i n P i .  (17) 

It follows that the resolving power is proportional to 
the size of the search fragment relative to the size of 
the structure ( n / N )  and is proportional to the square 
root of the number of observable reflections ( ~ ) .  
These facts are well known to the crystallographer. 

Somewhat more surprising is the behaviour of Za, 
and thus of Da. The path of Z, as a function of the 
threshold is depicted in Fig. 2, showing a maximum 
at a = 1.485 for P1 and at a = 1.608 for PI .  

Obviously, the usefulness of Da lies in the fact that 
Da values greater than 1 indicate that the orientation 
search will proceed in a straightforward manner: the 
maximum R value corresponding to the proper 
orientation is well separated from the random noise. 

On the other hand, if Da < 1 a quasi certain failure 
of the rotation search is expected. In view of this 
some important conclusions can be made. 

Z a P1 Za P1 

0"8 1 "3" 

0'7- 1-2- 

0'6- 1 "1" 

0"5- 1 "(it 
0'4- 0"9 

0"3 O" _ 
0"0 1"0 2'0 3"0 4"0 5"0 6"0 0"0 1'-0 2'-0 3:0 4~0 510 6~0 ' 

a a 

Fig. 2. Behaviour of Za as a function of the threshold a for an 
averaged structure in P1 (left) and P1 (right). 

0108-7673/84/040473-10501.50 

(i) The elimination of low intensities up to a = 
2.975 and a = 3.275 for P1 and PI ,  respectively, does 
not lower the resolving power below the level of D 
at a =0 .  This phenomenon explains the common 
empirical observation that the exact orientation para- 
meters can still be found if one uses only the strongest 
10% reflections (e.g. Tollin & Rossmann, 1966; Hill, 
Tsernoglou & Banaszak, 1973). Of course, in cases 
where D >  1, the availability of fast computers and 
fast Fourier techniques make it no longer desirable 
to speed up the calculations by eliminating part of 
the intensities. 

(ii) If, however, only a search fragment is available 
leading to Da=0 < 1, the discriminating power of the 
rotation search can be increased by eliminating all 
intensities below a = 1.485 for P1 and a = 1.608 for 
P1, thereby increasing Da by approximately 20 and 
10%, respectively. Equivalent to elimination is to put 
all intensities below the above mentioned thresholds 
equal to zero. 

(iii) The behaviour of Za (and of Da) is largely 
determined by the behaviour of the numerators in 
(17) and (16), since they contain the higher power in 
a compared to the denominator.  Inspection of the 
numerator  T with reference to (6) shows that T can 
be written as 

T =  E o ( E o - 1 ) .  (18) 

Equation (18) expresses mathematically that all 
E 2 <  1 give a negative contribution to the sum, 
whereas all E 2 >  1 give a positive contribution. 
Hence, elimination of intensities E 2 < 1 will increase 
T. This corresponds to the removal of the origin peak 
in the observed Patterson map. An origin-removed 
Patterson often reveals structural details more easily 
than the original. Owing to the presence of tr(R) in 
the denominator  of (14), the maximum of Da is 
slightly shifted to higher a values. 

(iv) The concept of the average structure was intro- 
duced to allow general structure-independent con- 
clusions. For an actual structure Da can be estimated 
a priori with higher accuracy by using in (6) and (7) 
the actual values Of~H E 6, T,H E4o and ~H E 2 o f the  
structure at hand. In that way, structure-dependent 
features can be introduced in all our expressions. 

Experimental verification 

Flaws in the way of reasoning and in the derivation 
of a statistical theory can best be investigated by 
comparing the theoretical results with those obtained 
after averaging over a sufficiently large number of 
simulated experiments. When agreement exists one 
may still ask whether the theory, however correct for 
the average structure, will be useful in the case of a 
particular structure. Then one questions the robust- 
ness of the predictions towards the peculiarities of a 
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Table 2. Comparison between experimental (simulated) and theoretical values for ~ ,  R(n, 0), R(0, n), 0-2(0, n) 
and D,, at various values of  the threshold a for an averaged structure in P1 

a ~= R(n, O) R(O, n) tr(O, n) Dd- 
e q u a t i o n  e q u a t i o n  e q u a t i o n  e q u a t i o n  

exp .  t h e o r ,  exp .  (10)* exp .  ( 1 0 ) t  exp .  (1 l):~ exp .  (14) 

0 960.0 960.0 1657.9 1680.0 968.6 960.0 4 I. 3 43.8 5- 53 5 -48 
I 356-8 353.2 148 l- I 1501. l 714.7 706.4 41.8 42.0 6-15 6-30 
2 130.9 129.9 1044.7 107 I-7 392.4 389.7 36-5 36.0 5-94 6-3 l 
3 47-2 47-8 624-4 657.3 188.9 191.2 28.7 28.5 5.06 5-45 
4 16.2 17.6 325.3 365.2 81.0 88-0 20.8 21.4 3.92 4.32 
5 5-7 6.5 160.8 190. I 34-3 39.0 15.6 15-5 2-70 3-24 

* With g = n = 30 and N = 40. 
t With g = 0, n = 30 and N = 40. 

W i t h g = 0 ,  n = 3 0 a n d  N = 4 0 .  

real structure, peculiarities which are not explicitly 
modelled into the theory. For example, we ignored 
in our derivations the effects of measuring errors and 
the effects of small misplacements in the atomic coor- 
dinates. We will therefore examine in detail our theo- 
retical results in the case of P1 against a simulated 
averaged structure as well as against an actual 
molecule. 

together with ~a and Da as a function of the threshold 
a .  

The occurrence of a maximum in Dexp near a = 1.5 
is clearly visible. The overall agreement is satisfactory, 
taking into account the smallness of the numbers in 
the simulation set. Their influence is discussed by 
Van Havere & Lenstra (1983a). 

Verification against simulated structures 

Simulations were performed over a series of 100 struc- 
tures in P1. Each single structure contained 40 equal 
atoms with a corresponding data set of 960 reflections. 
The search fragment contained 30 atoms in all cases. 
We tested only the behaviour as a function of data 
truncation, since the behaviour as a function of the 
model size has already been examined (Van Havere 
& Lenstra, 1983a, b, c) for the closely related R2 
values. For computation economics all calculations 
were performed in two dimensions, so that there was 
only one rotation parameter. Structures and search 
fragments were generated randomly and each search 
fragment was rotated in its asymmetric part. It was 
decided to stop the simulations after 100 structures 
since comparison of the results with those obtained 
after 50 structures revealed no serious differences. 
Nevertheless, the length of the series (100 structures) 
as well as the size of the structures (40 atoms) are 
rather small, but are dictated by the limits set by the 
computer facilities. 

The maximum value of R(Rmax) and the value of 
R averaged over all rotation grid points (Rave) were 
taken. Then (Rmax) , (Rave) and s(R) were calculated 
from 

( R m a x )  - -  ~ R m a x / 1 0 0 ,  ( R a v e )  --- ~ R a v e / 1 0 0  
100 100 

s E ( R )  = E {(R2)-(Rave)2}/100. 
IO0 

(Rmax) is to be compared with R(n, 0), (Rave) with 
R(0, n), both calculated from (10), while s2(R) is to 
be compared with 0"2(0, n), calculated from (11). 
Table 2 gives the comparison of these quantities 

Verification against a real structure 

The theoretical expressions were tested against a real 
structure, taking ammonium hydrogen malate in P1 
(Versichel, Van de Mieroop & Lenstra, 1978) as test 
example. Fig. 3 shows the experimental histogram of 
R va lues -  obtained after a Lattmann (1972) rotation 
s e a r c h - u p o n  which are superposed the theoretical 
signal and the theoretical Gaussian describing the 
random noise of the average structure [(10) and (11)]. 

samples 

R'mi" Ro,,. R,,,.. 
Fig. 3. Comparison between the theoretical Oaussian distribution 

describing the random noise for the average structure ( ), 
the random noise predicted using the actual data set (--.--) 
and the corresponding experimental histogram for ammonium 
hydrogen malate. 
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No attempt was made to include contributions of 
non-random noise in the theoretical curve. 

The agreement is satisfactory and indicates the 
robustness of the average structure concept. In fact, 
other examples, not given here, show that the agree- 
ment of first moments is as striking as was observed 
previously for the R2 function (Petit, Lenstra & Van 
Loock, 1981). 

Fig. 3 also shows that an even better prediction of 
the signal and the random noise can be made by using 
in (6) and (7) the actual sums Y~n EPo of the experi- 
mental data set. 
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Abstract 

Group theory is used to establish three results likely 
to be useful in solving the crystal structures of compli- 
cated incommensurate phases. In the first of these it 
is demonstrated that an incommensurate structure 
with paired scattering vectors +q must contain two 
different component structures, one modulated with 
cos q . r  and the other with sin q . r .  The second 
theorem states that the two components have different 
but related symmetries if the average structure has at 
least one element in its space group which turns q 
into -q .  In that case, each aspect of the modulation 
is assigned uniquely by symmetry to either the cosine 
or sine factor. The third result concerns the Patterson 
function that may be constructed from the intensity 
scattered by the incommensurate modulation. This is 
also necessarily two-dimensional, the plus difference 
Patterson function being the sum of the Patterson 
functions obtained separately for the two component 
structures, while the minus difference Patterson func- 
tion contains cross terms between the two com- 
ponents. Other symmetry arguments are mentioned, 
including symmetry signatures in Patterson functions, 
and systematic equalities in satellite intensities which 
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arise from systematic extinctions in the scattering 
from one component or the other. 

1. Introduction: the use of two-component structures 

This paper is concerned with the ramifications of one 
basic point, that the structure of a modulated incom- 
mensurate (IC) phase can always be expressed in the 
form of two components: 

(IC structure) = (average structure) 

+(first component CI) x cos q • r 

+ (second component C2) × sin q.  r. 
(1.1) 

This has a number of advantages which we shall 
develop, especially for solving complicated IC struc- 
tures such as some minerals. We emphasize that on 
general group-theoretical grounds there can be, and 
so presumably usually are, two independent modula- 
tion component structures ( 'components '  for short) 
C~ and C2 oscillating 90 ° out of phase with one 
another in (1.1) (McConnell,  1978, 1981a). Fig. 1 
illustrates the situation. Much of the utility of this 
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